Mathematical model of the formation of morphogen gradients through membrane-associated non-receptors.

نویسندگان

  • Jinzhi Lei
  • You Song
چکیده

The importance of morphogens is a central concept in developmental biology. Multiple-fate patterning and the robustness of the morphogen gradient are essential for embryo development. The ways by which morphogens diffuse from a local source to form long distance gradients can differ from one morphogen to the other, and for the same morphogen in different organs. This paper will study the mechanism by which morphogens diffuse through the aid of membrane-associated non-receptors and will investigate how the membrane-associated non-receptors help the morphogen to form long distance gradients and to achieve good robustness. Such a mechanism has been reported for some morphogens that are rapidly turned over. We will establish a set of reaction-diffusion equations to model the dynamical process of morphogen gradient formation. Under the assumption of rapid morphogen degradation, we discuss the existence, uniqueness, local stability, approximation solution, and the robustness of the steady-state gradient. The results in this paper show that when the morphogen is rapidly turned over, diffusion of the morphogen through membrane-associated non-receptors is a possible strategy to form a long distance multiple-fate gradient that is locally stable and is robust against the changes in morphogen synthesis rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness of Morphogen Gradients with "bucket Brigade" Transport through Membrane-associated Non-receptors.

Robust multiple-fate morphogen gradients are essential for embryo development. Here, we analyze mathematically a model of morphogen gradient (such as Dpp in Drosophila wing imaginal disc) formation in the presence of non-receptors with both diffusion of free morphogens and the movement of morphogens bound to non-receptors. Under the assumption of rapid degradation of unbound morphogen, we intro...

متن کامل

Membrane-associated non-receptors and morphogen gradients.

A previously investigated basic model (System B) for the study of signaling morphogen gradient formation that allows for reversible binding of morphogens (aka ligands) with signaling receptors, degradation of bound morphogens and diffusion of unbound morphogens is extended to include the effects of membrane-bound non-signaling molecules (or non-receptors for short) such as proteoglycans that bi...

متن کامل

Travelling gradients in interacting morphogen systems.

Morphogen gradients are well known to play several important roles in development; however the mechanisms underlying the formation and maintenance of these gradients are often not well understood. In this work, we investigate whether the presence of a secondary morphogen can increase the robustness of the primary morphogen gradient to perturbation, thereby providing a more stable mechanism for ...

متن کامل

Cell-Surface Bound Nonreceptors and Signaling Morphogen Gradients.

The patterning of many developing tissues is orchestrated by gradients of signaling morphogens. Included among the molecular events that drive the formation of morphogen gradients are a variety of elaborate regulatory interactions. Such interactions are thought to make gradients robust, i.e. insensitive to change in the face of genetic or environmental perturbations. But just how this is accomp...

متن کامل

Diverse Paths to Morphogen Gradient Robustness

2 Summary The patterning of many developing tissues is orchestrated by gradients of morphogens. Included among the molecular events that drive the formation of morphogen gradients are a variety of elaborate regulatory interactions. It is widely thought that the purpose of such interactions is to make gradients robust—i.e. resistant to change in the face of genetic or environmental perturbations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bulletin of mathematical biology

دوره 72 4  شماره 

صفحات  -

تاریخ انتشار 2010